В соответствии с законом генри давление. Законы Генри, Дальтона, Сеченова

ГЕНРИ ЗАКОН

: растворимость газа при заданной т-ре пропорциональна его давлению над р-ром. В такой формулировке закон был установлен У. Генри в 1802. Совр. формулировка: при постоянной т-ре парциальное давление р, растворенного в-ва над его предельно разб. р-ром пропорционально мольной доле этого в-ва i ,> т. е. р i - = где Х i -постоянная Генри для в-ва i.

Г. з.-осн. закон, определяющий термодинамич. св-ва предельно разб. р-ров неэлектролитов. Так, если для идеального разб. бинарного р-ра выполняется Г. з., то из Гиббса-Дюгема уравнения и общих законов термодинамич. равновесия следует, что парциальное давление пара р-рителя над таким р-ром при постоянной т-ре пропорционально мольной доле р-рителя (см. Рауля законы), а понижение т-ры замерзания р-ра (если его компоненты не образуют твердых р-ров) пропорционально мольной доле растворенного в-ва и не зависит от его хим. природы. В области выполнения Г. з. или, иначе говоря, в идеальном разб. р-ре термодинамич. активности растворенных в-в пропорциональны их мольным долям (при любом способе выбора стандартных состояний). При выборе в кач-ве стандартного состояния для растворенного в-ва гипотетич. состояния при N, = 1, в к-ром в-во обладало бы св-вами, соответствующими предельно разб. р-ру в данном р-рителе, его активность становится равной мольной доле, а коэф. активности-единице. Благодаря этому при записи условий хим. равновесия в разб. р-рах неэлектролитов можно опускать коэф. активности и использовать действующих масс закон в его наиб. простой форме.

Постоянную К i можно рассматривать как константу равновесия перехода в-ва i из р-ра в газ. Она связана с изменением энергии Гиббса при сольватации соотношением: где Т-т-ра, R-газовая постоянная. Величина и давление рр пара над чистой жидкостью iсвязаны соотношением:, где -коэф. активности в-ва i в его предельно разб. р-ре, определенный по отношению к чистой жидкости iкак стандартному состоянию этого в-ва. В идеальном р-ре =1 и К i = р o i .

Для высоких давлений формулировка Г. з. требует уточнения. В этих случаях необходимо для определения р-римо-сти газа учитывать отклонение поведения газовой фазы от поведения идеального газа, что достигается заменой р i летучестью Кроме того, существенна зависимость К i от общего давления р, определяемая соотношением:

где -парциальный мольный объем растворенного в-ва в предельно разб. р-ре. Учет этих двух факторов приводит к ур-нию:

где p o 1 - давление пара р-рителя при данной т-ре. Если можно считать не зависящим от давления, a p o 1 невелико, по сравнению с р, ур-ние принимает вид (ур-ние Кричевско-го - Казарновского, 1935):

Анализ этого ур-ния показывает, что на кривой зависимости р-римости газа от давления имеется максимум. В точке максимума парциальные мольные объемы в-ва i в обеих фазах (жидкой и паровой) равны.

Для учета отклонений от поведения идеального разб. р-ра при расчете р-римости газов в ур-ния, выражающие Г. з., в качестве множителя при мольной доле i вводят соответствующий коэф. активности.

Лит.: Кричевский И. Р., Фазовые равновесия в растворах при высоких давлениях, 2 изд., М.-Л., 1952; Карапетьянц М. X., Химическая термодинамика, 3 изд., М., 1975, с. 249-51, 272-80. В. А. Михайлов.

Химическая энциклопедия. - М.: Советская энциклопедия Под ред. И. Л. Кнунянца 1988

Закон Генри – Дальтона относится к растворимости газов жидкости в зависимости от упругости этого газа, производящего давление на жидкость.

При некотором определенном давлении и постоянно температуре растворяется в жидкости определенное количество газа, зависящее также и от свойств жидкости. При увеличении или уменьшении давления газовой атмосферы на жидкость с сохранением той же температуры увеличивается или уменьшается в таком же отношении количество растворенного газа.

Растворимость газа прямо пропорциональна давлению.

C i =K g P i

Закон Сеченова

Чем выше концентрация электролита, тем ниже растворимость раствора.

C i =C o e - KgCe

Роль раствора в жизнедеятельности организма

· Коллоидные растворы:

1. Кровь, лимфа, внутриклеточные жидкости в организме являются коллоидными растворами белков и других веществ.

2. Коллоидными растворами являются клеи и краски.

3. Мармелад, студень, аэрозоли.

4. Используются в мыловарении, фармацевтике, парфюмерии, производстве пластмасс.

· Истинные растворы:

1. Примеры: воздух, чугун, сталь, водные растворы.

2. Усвоение пищи связано с растворением питательных веществ.

3. Растворами являются многие лекарства.

4. Химические, биологические и физические исследования часто проводят с применением растворов.

Задание 7

Колигативные свойства разбавленных растворов. Диффузия. Относительное понижение давления насыщенного пара растворителя над раствором (Первый закон Рауля). Понижения температуры замерзания и повышения температуры кипения растворов по сравнению с растворителем (Второй закон Рауля). Криометрия, эбулиометрия, их применения в медико-биологических исследованиях.

Коллигативные свойства растворов – это свойства растворов, обусловленные только самопроизвольным движением молекул, то есть они определяются не химическим составом, а числом кинетических единиц – молекул в единице объема или массы. К таким коллигативным свойствам относятся:

· Понижение давления насыщенного пара



· Повышение температуры кипения растворов

· Понижение температуры замерзания растворов

· Возникновение осмотического давления

Коллигативные свойства раствора не зависят от природы растворителя и растворенного вещества, а определяется только концентрацией частиц в растворе.

Законы Рауля

Первый закон Рауля:

· Давление пара раствора, содержащего нелетучее растворенное вещество, прямо пропорционально мольной доле растворителя в данном растворе.

· Парциальное давление над раствором прямо пропорционально мольной доле растворенного вещества.

Второй закон Рауля

· Понижение температуры кипения и повышение температуры замерзания раствора прямо пропорционально моляльной концентрации раствора.

Диффузия – неравновесный процесс, вызываемый молекулярным тепловым движением и приводящий к установлению равновесного распределения концентраций внутри фаз.

Эбулиометрия и криометрия

Эбулиомерия и криометрия используются для определения ряда констант веществ. Метод криометрии имеет широкое применение при исследовании растворов, представляющих собой по меньшей мере двухкомпонентную систему и образующих три фазы: пар, жидкость, твердое вещество.

Криометрия – совокупность методов определения молекулярной массы неэлектролитов, степени диссоциации слабых электролитов и осматического давления, основанных на измерении разности температур замерзания чисторастворителя и растворов исследуемых веществ.

Метод криометрии значительно удобнее и им пользуются чаще, чем методом эбулиометрии, так как в первом случае не опасны потери растворителя при испарении.

Эбулиометрия базируется на различии между температурами кипения раствора и чистого растворителя.

Методами эбулиометрии изучены коэффициенты относительной летучести хлорида галлия с хлоридами мышьяка, теллура, германия, олова, титана.

Лимитирующим фактором в применении эбулиометрии для определения молекулярных весов полимеров является чувствительность измерения температуры.

Задание 8

Осмос. Осмотическое давление. Закон Вант-Гоффа для разбавленных растворов электролитов и неэлектролитов. Изотонический коэффициент. Поведение живой клетки в гипо-, гипер-, изотонических растворах. Плазмолиз, гемолиз. Роль осмоса и осмотического давление в биологических системах. Осмотическое давление крови, осмотическое давление.

Остос – односторонняя диффузия растворителя через полупроницаемую мембрану в сторону концентрированного раствора.

Осматическое давление – внешнее давление на раствор, при котором устанавливается осматическое равновесие между раствором в чистом растворителе.

Закон Вант-Гоффа:

Осматическое давление раствора равно давлению, которое имело бы растворенное вещество, если бы оно при данной температуре находилось в газообразном состоянии и занимало такой же объём, какой занимает раствор.

Осматическое давление разбавленных растворов неэлектролитов прямо пропорционально молярной концентрации и абсолютной температуре раствора и не зависит от его природы.

Изотонический коэффициент – безмерный параметр, характеризующий поведение вещества в растворе. Он численно равен отношению значения некоторого коллигативного свойства раствора данного вещества и значения некоторого коллигативного свойства раствора данного вещества и значения того же коллигативного свойства неэлектролита той же концентрации при неизменных параметрах системы.

Раствор, имеющий более высокое осмотическое давление по сравнению с другим раствором, называется гипертоническим , имеющий более низкое – гипотоническим .

Гипертонический раствор - раствор, имеющий большую концентрацию вещества по отношению к внутриклеточной. При погружении клетки в гипертонический раствор, происходит её дегирадации – внутриклеточная вода выходит наружу, что приводит к высыханию и сморщиванию клетки. Гипертонические растворы применяются при осмотерапии для лечения внутримозгового кровоизвлияния.

Гипотонический раствор – раствор, имеющий меньшее осмотическое давление по отношению к другому, то есть обладающий меньшей концентрацией вещества, не проникающего через мембрану. При погружении клетки в гипотонический раствор, происходит осмотическое проникновение воды внутрь клетки с развитием её гипергидратации – набухания с последующим цитолизом.

Обилие воды в клетках и тканях необходимы для нормального течения многообразных физических и химических процессах гидратации и диссоциации веществ, реакций гидролиза, окисления.

Плазмолиз – отделение протопласта от клеточной стенки в гипертоническом растворе.

Гемолиз – разрушение эритроцитов крови с выделением в окружающую среду гемоглобина.

Задание 9

Растворы электролитов. Электролиты в организме человека.Растворы слабых электролитов, теория Аррениуса. Понятия о константе диссоциации и степени диссоциации. Закон разбавления Оствальда. Теории кислот и оснований Аренниуса, Бренстеда-Лоури, Льюиса.

Раствор – гомогенная смесь из двух или более компонентов. Один компонент (чья масса преобладает) – растворитель, второй – растворимое вещество.

Растворы электролитов

Электролиты – вещества, которые при растворении подвергаются диссоциации на ионы. В результате раствор приобретает способность проводить электрический ток.

Растворимостью называется способность вещества растворяться в том или ином растворителе. Мерой растворимости вещества при данных условиях служит содержание его в насыщенном растворе. Поэтому численно растворимость может быть выражена теми же способами, что и состав, например, процентным отношением массы растворенного вещества к массе насыщенного раствора или количеством растворенного вещества, содержащимся в 1 л насыщенного раствора. Часто растворимость выражают также числом единиц массы безводного вещества, насыщающего при данных условиях 100 единиц массы растворителя; иногда выраженную этим способом растворимость называют коэффициентом растворимости.

Растворимость различных веществ в воде изменяется в широких пределах. Если в 100 г воды растворяется более 10 г вещества, то такое вещество принято называть хорошо растворимым; если растворяется менее 1 г вещества - малорастворимым и, наконец, практически нерастворимым, если в раствор переходит менее 0,01 г вещества.

Растсорение большинства твердых тел сопровождается поглощением теплоты. Это объясняется затратой значительного количества энергии на разрушение кристаллической решетки твердого тела, что обычно не полностью компенсируется энергией, выделяющейся при образовании гидратов (сольватов). Прилагая принцип Ле Шателье к равновесию между веществом в кристаллическом состоянии п его насыщенным раствором

приходим к выводу, что в тех случаях, когда вещество растворяется с поглощением энергии, повышение температуры должно приводить к увеличению его растворимости

В большинстве подобных случаев с повышением температуры взаимная раствори-мость жидкостей увеличивается до тех пор, пока не будет достигнута температура, при которой обе жидкости смешиваются в любых пропорциях.

При растворении твердых тел в воде объем системы обычно изменяется незначительно. Поэтому растворимость веществ, находящихся в твердом состоянии, практически не зависит от давления.

Жидкости также могут растворяться в жидкостях. Некоторые из них неограниченно растворимы одна в другой, т. е. смешиваются друг с другом в любых пропорциях, как, например, спирт и вода, другие - взаимно растворяются лишь до известного предела.

Температура, прн которой ограниченная взаимная растворимость жидкостей переходит в неограниченную, называется критической температурой растворения

закон распределения, согласно которому вещество, способное растворяться в двух несме-ишвающихся растворителях, распределяется между ними так, что отношение его концентраций в этих растворителях при постоянной температуре остается постоянным, независимо от общего количества растворенного вещества:



Здесь С1 и С2-концентрации растворенного вещества в первом и втором растворителях; /(- так называемый коэффициент распределения.

Растворение газов в воде представляет собой экзотермический процесс. Поэтому растворимость газов с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа - это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Кипячением можно удалить из воды весь растворенный в ней воздух.

Однако растворение газов в органических жидкостях нередко сопровождается поглощением теплоты; в подобных случаях с ростом температуры растворимость газа увеличивается.

Закон Генри :Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа.

Закон Генри может быть выражен уравнением

где С - массовая концентрация газа в насыщенном растворе; р - парциальное давление; k - коэффициент пропорциональности, называемый константой Генри (или коэффициентом Генри).

Отметим важное следствие закона Генри: объем газа, растворяющегося при постоянной температуре в данном объеме жидкости, не зависит от его парциального давления. Если над жидкостью находится смесь нескольких газов, то растворимость каждого из них определяется его парциальным давлением.

Это необходимо учитывать при расчете растворимости газов, находящихся в смеси с другими газами. Газы подчиняются закону Генри пи не очень высоких давлениях и притом лишь в случае, когда они не вступают в химическое взаимодействие с растворителем. При высоких давлениях, когда поведение всех газов заметно отличается от идеального, отклоненне от закона Генри наблюдается и в случае газов, химически не взаимодействующих с растворителем.

Зависимость растворимости газов в жидкости определяется законом Генри :

«Растворимость газа в жидкости прямо пропорциональна парциальному давлению газа при постоянной температуре».

Условием рановесного распределения вещества между газом и жидкостью является равенство химических потенциалов между жидкой и газовой фазами:

Химический потенциал описывается уравнением:

C =Г· P – закон Генри.

Г - постоянная Генри, C – мольная доля растворенного вещества.

Уравнение применимо для идеальных растворов. Если происходит диссоциация или ассоциация:

C n =Г· P

n-коэффициент, учитывающий изменение числа частиц в растворе.

Вообще, при растворении газа в жидкости устанавливается равновесие:

Газ + Жидкость = Насыщенный раствор газа в жидкости

При этом объем системы существенно уменьшается. Следовательно, повышение давления должно приводить к смещению равновесия вправо, т. е. к увеличению растворимости газа; и наоборот.

Растворимость газа в жидкости зависит от ряда факторов : природа растворителя и растворимого вещества, давления, газовой фазы и температуры.

Наибольшее влияние на растворимость газов в жидкостях оказывает природа веществ. Так, в 1 литре воды при t = 18 °C и P = 1 атм. растворяется 0.017 л. азота, 748.8 л. аммиака или 427.8 л. хлороводорода. Аномально высокая растворимость газов в жидкостях обычно обусловливается их специфическим взаимодействием с растворителем – образованием химического соединения (для аммиака) или диссоциацией в растворе на ионы (для хлороводорода). Газы, молекулы которых неполярны, растворяются, как правило, лучше в неполярных жидкостях – и наоборот. Зависимость растворимости газов от давления выражается законом Генри (Генри–Дальтона). Газы, способные к специфическому взаимодействию с растворителем, данному закону не подчиняются.

Растворимость газов в жидкостях существенно зависит от температуры ; количественно данная зависимость определяется уравнением Клапейрона–Клаузиуса (здесь X – мольная доля газа в растворе, λ – тепловой эффект растворения 1 моля газа в его насыщенном растворе):

Как правило, при растворении газа в жидкости выделяется теплота (λ < 0), поэтому с повышением температуры растворимость уменьшается. Растворимость газов в жидкости сильно зависит от концентрации других растворенных веществ.

Зависимость растворимости газов от концентрации электролитов в жидкости выражается формулой Сеченова (X и X o – растворимость газа в чистом растворителе и растворе электролита с концентрацией C):

Таким образом, суммируя вышесказанное можно сделать следующие выводы. Поскольку растворение газов в воде представляет собой экзотермический процесс, их растворимость с повышением температуры уменьшается. Если оставить в теплом помещении стакан с холодной водой, то внутренние стенки его покрываются пузырьками газа - это воздух, который был растворен в воде, выделяется из нее вследствие нагревания. Значит, простым кипячением воды можно удалить из воды весь растворенный в ней воздух. Также процесс растворения подчиняется принципу Ле Шателье.

Растворение газов в жидкостях почти всегда сопровождается выделением теплоты (энтальпия ДЯраств

Иногда растворение газа сопровождается поглощением теплоты, например растворение благородных газов в некоторых органических растворителях. В этом случае повышение температуры увеличивает растворимость газа.

Газ, как и многие другие вещества, не растворяется в жидкости беспредельно. 11ри некоторой концентрации газа X устанавливается равновесие:

11ри растворении газа в жидкости происходит значительное уменьшение объема системы. Поэтому повышение давления, согласно принципу Ле Шателье, должно приводить к смещению равновесия вправо, т.е. к увеличению растворимости газа. Если газ малорастворим в данной жидкости и давление невелико, то растворимость газа пропорциональна его давлению. Эта зависимость выражается законом Генри (1803):

Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорционально давлению газа.

Закон Генри может быть записан в следующей форме:

где с (X) - концентрация газа в насыщенном растворе, моль/л; р (X) - давление газа X над раствором, Па; Я г (X) - постоянная Генри для газа X, моль-л " Па 1 .

Константа Генри зависит от природы газа, растворителя и температуры. В табл. 8.3 представлены константы Генри для некоторых газов, растворенных в воде, при 298 К.

Закон Генри справедлив лишь для сравнительно разбавленных растворов, при невысоких давлениях и отсутствии химического взаимодействия между молекулами растворяемого газа и растворителя. Так, СО2 и NH3 вступают в химическое взаимодействие с водой, а НО диссоциирует в воде, что резко повышает растворимость этих газов. При очень высоких давлениях растворимость газа может достигнуть максимума, поскольку в этом случае изменение объема жидкости вследствие растворения в ней газа становится соизмеримым с объемом растворенного газа.

Таблица 8.3

Константы Генри для газов, растворенных в воде (298 К)

А|(Х). моль-л" 1 нИа " 1

А|(Х), моль-л"-нИа " 1

Закон Генри является частным случаем общего закона Дальтона. Если речь идет о растворении не одного газообразного вещества, а смеси газов, то растворимость каждого компонента подчиняется закону Дальтона:

Растворимость каждого из компонентов газовой смеси при постоянной температуре пропорциональна парциальному давлению компонента над жидкостью и не зависит от общего давления смеси и индивидуальных свойств других компонентов.

Иначе говоря, в случае растворения смеси газов в жидкости в математическое выражение закона Генри (8.1) вместо р (X) подставляют парциальное давление р, данного компонента.

Под парциальным давлением р, компонента понимают часть общего давления Ровш газовой смеси, которая обусловлена этим компонентом:

Пример. Воздух представляет собой смесь, состоящую в основном из трех газов: 78% азота, 21% кислорода и 1% аргона (по объему). Определите концентрацию азота в воде при 298 К, если постоянная Генри равна 6,13* 10 4 моль-л "-Па.

Так как воздух содержит 78% азота по объему, парциальное давление азота в воздухе при 101 325 Па составляет 79 033,5 Па (объемная доля азота равна молярной доле азота, отсюда р(Ыг) = А>бщО,78). Из закона Дальтона следует, что c(N 2) = *KN2) * Р(М 2), отсюда c(N 2) = 6,13-10~ 9 -79 033,5 = 4,84-10^ моль/л.

Изучая растворимость газов в жидкостях в присутствии электролитов, русский врач-физиолог И.М. Сеченов (1829-1905) установил следующую закономерность (закон Сеченова ):

Растворимость газов в жидкостях в присутствии электролитов понижается; происходит высаливание газов.

Математическое выражение закона Сеченова имеет следующий вид:

где с(Х) - растворимость газа X в присутствии электролита; со (X) - растворимость газа X в чистом растворителе; с э - концентрация электролита; К с - константа Сеченова, зависящая от природы газа, электролита и температуры.

Одной из причин, приводящей к уменьшению растворимости газов в присутствии электролитов, является гидратация (сольватация) ионов электролитов молекулами растворителя. В результате этого процесса уменьшается число свободных молекул растворителя, а следовательно, понижается ею растворяющая способность.

Рис. 8.2.

а - растворение газа в жидкости. б - растворение газа в крови; р(Х|)- парцналь- нос давление вещества Х| в газе, с(Х|) - кон- центрация ттого вещества в растворе. Р т - давление газовой дыхательной смеси