Поток солнечной энергии на единицу поверхности. Солнечная энергия – решение будущего

Мы живём в мире будущего, хотя не во всех регионах это заметно. В любом случае возможность развития новых источников энергии сегодня всерьёз обсуждается в прогрессивных кругах. Одним из самых перспективных направлений выступает солнечная энергетика.

На данный момент около 1% электроэнергии на Земле получается вследствие переработки солнечного излучения. Так почему мы до сих пор не отказались от других «вредных» способов, и откажемся ли вообще? Предлагаем ознакомиться с нашей статьей и попытаться самостоятельно ответить на этот вопрос.

Как солнечная энергия преобразуется в электричество

Начнём с самого важного – каким образом солнечные лучи перерабатываются в электроэнергию.

Сам процесс носит название «Солнечная генерация» . Наиболее эффективные пути его обеспечения следующие:

  • фотовольтарика;
  • гелиотермальная энергетика;
  • солнечные аэростатные электростанции.

Рассмотрим каждый из них.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта . Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели :

О применении солнечных батарей в качестве зарядных устройств, источников питания частных домах, для облагораживания городов и в медицинских целях можно почитать в .

Современные солнечные панели и электростанции

Из недавних примеров можно отметить солнечные панели компании SistineSolar . Они могут иметь любой оттенок и текстуру в отличие от традиционных тёмно-синих панелей. А это значит, что ими можно «оформить» крышу дома так, как Вам заблагорассудится.

Другое решение предложили разработчики Tesla. Они выпустили в продажу не просто панели, а полноценный кровельный материл, перерабатывающий солнечную энергию. содержит встроенные солнечные модули и также может иметь самое разнообразное исполнение. При этом сам материал гораздо прочнее обычной кровельной черепицы, у Solar Roof даже гарантия бесконечная.

В качестве примера полноценной СЭС можно привести недавно построенную в Европе станцию с двусторонними панелям. Последние собирают как прямое солнечное излучение, так и отражающее. Это позволяет повысить эффективность солнечной генерации на 30%. Эта станция должна вырабатывать в год около 400 МВт*ч.

Интерес вызывает и крупнейшая плавучая СЭС в Китае . Её мощность составляет 40 МВт. Подобные решения имеют 3 важных преимущества:

  • нет необходимости занимать большие наземные территории, что актуально для Китая;
  • в водоёмах уменьшается испаряемость воды;
  • сами фотоэлементы меньше нагреваются и работают эффективнее.

Кстати, эта плавучая СЭС была построена на месте заброшенного угледобывающего предприятия.

Технология, основанная на фотовольтарическом эффекте, является наиболее перспективной на сегодня, и по оценкам экспертов солнечные панели уже в ближайшие 30-40 лет смогут производить около 20% мировой потребности электроэнергии.

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.


Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

В чём преимущества солнечной энергетики

  • Солнце будет давать нам свою энергию ещё несколько миллиардов лет. При этом людям не нужно тратить средства и ресурсы для её добычи.
  • Генерация солнечной энергии – полностью экологичный процесс, не имеющий рисков для природы.
  • Автономность процесса. Сбор солнечного света и выработка электроэнергии проходит с минимальным участием человека. Единственное, что нужно делать, это следить за чистотой рабочих поверхностей или зеркал.
  • Выработавшие свой ресурс солнечные панели могут быть переработаны и снова использованы в производстве.

Проблемы развития солнечной энергетики

Несмотря на реализацию идей по поддержанию работы солнечных электростанций в ночное время, никто не застрахован от капризов природы. Затянутое облаками небо в течение нескольких дней значительно понижает выработку электричества, а ведь населению и предприятиям необходима его бесперебойная подача.

Строительство солнечной электростанции – удовольствие не из дешёвых. Это обусловлено необходимостью применять редкие элементы в их конструкции. Не все страны готовы растрачивать бюджеты на менее мощные электростанции, когда есть рабочие ТЭС и АЭС.

Для размещения таких установок необходимы большие площади, причём в местах, где солнечное излучение имеет достаточный уровень.

Как развита солнечная энергетика в России

К сожалению, в нашей стране пока во всю жгут уголь, газ и нефть, и наверняка Россия будет в числе последних, кто полностью перейдёт на альтернативную энергетику.

На сегодняшний день солнечная генерация составляет всего 0,03% энергобаланса РФ . Для сравнения в той же Германии этот показатель составляет более 20%. Частные предприниматели не заинтересованы во вложении средств в солнечную энергетику из-за долгой окупаемости и не такой уж высокой рентабельности, ведь газ у нас обходится гораздо дешевле.

В экономически развитых Московской и Ленинградской областях солнечная активность на низком уровне. Там строительство солнечных электростанций просто нецелесообразно. А вот южные регионы довольно перспективны.

В последние годы ученых особенно интересуют альтернативные источники энергии. Нефть и газ рано или поздно закончатся, поэтому подумать о том, как мы будем выживать в этой ситуации, приходится уже сейчас. В Европе активно используются ветряки, кто-то пытается извлечь энергию из океана, а мы поговорим о солнечной энергии. Ведь звезда, которую мы практически каждый день видим в небе, может помочь нам сберечь и улучшить экологическую обстановку. Значение солнца для Земли трудно переоценить - оно дает тепло, свет и позволяет функционировать всему живому на планете. Так почему бы не найти ему еще одно применение?

Немного истории

В середине 19 века физик Александр Эдмон Беккерель открыл фотогальванический эффект. А к концу столетия Чарльз Фриттс создал первый прибор, способный перерабатывать солнечную энергию в электричество. Для этого использовался селен, покрытый тонким слоем золота. Эффект был слабым, но именно это изобретение зачастую связывают с началом эры солнечной энергии. Некоторые ученые не согласны с такой формулировкой. Они называют родоначальником эры солнечной энергии всемирно известного ученого Альберта Эйнштейна. В 1921 году он получил Нобелевскую премию за объяснение законов внешнего фотоэффекта.

Казалось бы, солнечная энергия - это перспективный путь развития. Но существует немало препятствий для того, чтобы она вошла в каждый дом - в основном, экономических и экологических. Из чего складывается стоимость солнечных батарей, какой вред они могут нанести окружающей среде и какие еще существуют способы получения энергии, узнаем ниже.

Способы накопления

Самой актуальной задачей, связанной с приручением энергии солнца, является не только ее получение, но и аккумуляция. И именно это является самым сложным. В настоящее время учеными было разработано только 3 способа полноценного приручения солнечной энергии.

Первый основан на использовании параболического зеркала и немного напоминает игру с лупой, которая всем знакома с детства. Сквозь линзу свет проходит, собираясь в одной точке. Если в этом месте положить кусочек бумаги, она загорится, поскольку температура скрещенных солнечных лучей невероятно высока. Параболическое зеркало представляет собой вогнутый диск, напоминающий неглубокую чашу. Это зеркало, в отличие от лупы, не пропускает, а отражает солнечный свет, собирая его в одной точке, которая обычно направлена на черную трубу с водой. Такой цвет используют потому, что он лучше всего поглощает свет. Вода в трубе под действие солнечных лучей нагревается и может использоваться для получения электричества или для отопления небольших домов.

Плоский нагреватель

В этом способе используется совсем другая система. Приемник солнечной энергии выглядит как многослойная конструкция. Принцип его работы выглядит так.

Проходя через стекло, лучи попадают на затемненный металл, который, как известно, лучше поглощает свет. Солнечная радиация превращается в и нагревает воду, которая находится под железной пластиной. Далее все происходит как в первом способе. Нагретую воду можно использовали либо для отопления помещений, либо для получения электрической энергии. Правда, эффективность такого метода не настолько высока, чтобы использовать его повсеместно.

Как правило, полученная таким образом солнечная энергия - это тепло. Для получения электричества гораздо чаще используют третий способ.

Солнечные элементы

Больше всего мы знакомы именно с таким способом получения энергии. Он подразумевает использование различных батарей или солнечных панелей, которые можно встретить на крышах многих современных домов. Такой способ сложнее ранее описанных, но является намного более перспективным. Именно он дает возможность солнца в электричество в промышленных масштабах.

Специальные панели, предназначенные для улавливания лучей, делают из обогащенных кристаллов кремния. Солнечный свет, попадая на них, сбивает электрон с орбиты. На его место тут же стремится другой, таким образом получается непрерывная подвижная цепочка, которая и создает ток. Он при необходимости сразу используется для обеспечения приборов или накапливается в виде электроэнергии в специальных аккумуляторах.

Популярность этого способа обоснована тем, что он позволяет получить более 120 Вт всего с одного квадратного метра солнечной батареи. При этом панели имеют сравнительно небольшую толщину, что позволяет размещать их практически везде.

Типы кремниевых панелей

Существует несколько видов солнечных батарей. Первые выполнены с использованием монокристаллического кремния. Их коэффициент полезного действия составляет примерно 15%. Такие являются наиболее дорогими.

КПД элементов, изготовленных из поликристаллического кремния, достигает 11%. Стоят они меньше, поскольку материал для них получают по упрощенной технологии. Третий тип является наиболее экономичным и отличается минимальным КПД. Это панели из аморфного кремния, то есть некристаллического. Кроме низкой эффективности, они имеют еще один существенный недостаток - недолговечность.

Некоторые производители для увеличения КПД задействуют обе стороны панели солнечной батареи - тыльную и фронтальную. Это позволяет улавливать свет в больших объемах и увеличивает количество получаемой энергии на 15-20%.

Отечественные производители

Солнечная энергия на Земле получает все большее распространение. Даже в нашей стране заинтересованы в изучении этой отрасли. Несмотря на то что в России не очень активно идет развитие альтернативной энергетики, определенных успехов удалось добиться. В настоящее время созданием панелей для получения солнечной энергии занимаются несколько организаций - в основном это научные институты различной направленности и заводы по производству электрооборудования.

  1. НПФ "Кварк".
  2. ОАО «Ковровский механический завод».
  3. Всероссийский НИИ электрификации сельского хозяйства.
  4. НПО машиностроения.
  5. АО ВИЭН.
  6. ОАО «Рязанский завод металлокерамических приборов».
  7. АООТ Правдинский опытный завод источников тока «Позит».

Это только небольшая часть предприятий, принимающих активное участие в развитии альтернативной

Влияние на окружающую среду

Отказ от угольных и нефтяных источников энергии связан не только с тем, что эти ресурсы рано или поздно закончатся. Дело в том, что они сильно вредят окружающей среде - загрязняют почву, воздух и воду, способствуют развитию заболеваний у людей и снижению иммунитета. Именно поэтому альтернативные источники энергии должны быть безопасны с экологической точки зрения.

Кремний, который используется для производства фотоэлементов, сам по себе безопасен, поскольку является природным материалом. Но после его очистки остаются отходы. Именно они могут нанести вред человеку и окружающей среде при неправильном использовании.

Кроме того, на участке, полностью заставленном солнечными батареями, может нарушиться естественное освещение. Это приведет к изменениям в существующей экосистеме. Но в целом влияние на окружающую среду устройств, предназначенных для преобразования солнечной энергии, минимально.

Экономичность

Самые большие затраты по связаны с дороговизной сырья. Как мы уже выяснили, специальные панели создаются с использованием кремния. Несмотря на то что этот минерал широко распространен в природе, с его добычей связаны большие проблемы. Дело в том, что кремний, который составляет более четверти массы земной коры, не подходит для производства солнечных батарей. Для этих целей пригоден только чистейший материал, получаемый промышленным способом. К сожалению, из песка получить чистейший кремний крайне проблематично.

По цене данный ресурс сравним с ураном, использующимся на АЭС. Именно поэтому стоимость солнечных батарей в настоящее время остается на довольно высоком уровне.

Современные технологии

Первые попытки приручить солнечную энергию появились достаточно давно. С тех пор многие ученые активно заняты поисками максимально эффективного оборудования. Оно должно быть не только экономически выгодным, но также компактным. Его КПД должен стремиться к максимуму.

Первые шаги к идеальному прибору для получения и преобразования солнечной энергии были сделаны с изобретением кремниевых батарей. Конечно, цена достаточно высока, но зато панели могут быть размещены на крышах и стенах домов, где они никому не будут мешать. А эффективность таких батарей неоспорима.

Но лучший способ увеличить популярность солнечной энергии - сделать ее более дешевой. Немецкие ученые уже предложили заменить кремний синтетическими волокнами, которые могут быть интегрированы в ткань или другие материалы. КПД такой солнечной батареи не очень высок. Но рубашка с вкраплением синтетических волокон сможет, по крайней мере, обеспечить электроэнергией смартфон или плеер. Активно ведутся работы и в области нанотехнологий. Вероятно, именно они позволят солнцу стать наиболее популярным источником энергии уже в этом столетии. Специалисты компании Scates AS из Норвегии уже заявили, что нанотехнологии позволят сократить стоимость солнечных панелей в 2 раза.

Солнечная энергия для дома

О жилье, которое само себя будет обеспечивать, наверняка мечтают многие: нет зависимости от централизованного отопления, сложностей с оплатой счетов и вреда для окружающей среды. Уже сейчас во многих странах активно строится жилье, потребляющее только энергию, полученную из альтернативных источников. Яркий пример - так называемый солнечный дом.

В процессе строительства он потребует больших вложений, чем традиционный. Но зато после нескольких лет эксплуатации все затраты окупятся - не придется платить за отопление, горячую воду и электричество. В солнечном доме все эти коммуникации привязаны к специальным фотоэлектрическим панелям, размещенным на крыше. Причем полученные таким образом энергетические ресурсы не только расходуются на текущие нужды, но и накапливаются для использования в ночное время и при пасмурной погоде.

В настоящее время строительство таких домов ведется не только в странах, приближенных к экватору, где добывать солнечную энергию проще всего. Их возводят также и в Канаде, Финляндии и Швеции.

Плюсы и минусы

Развитие технологий, позволяющих повсеместно использовать солнечную энергию, могло бы вестись более активно. Но существую определенные причины, по которым это все еще не является приоритетной задачей. Как мы уже говорили выше, при производстве панелей вырабатываются вредные для окружающей среды вещества. Кроме того, готовое оборудование содержит в своем составе галлий, мышьяк, кадмий и свинец.

Немало вопросов вызывает и необходимость утилизации фотоэлектрических панелей. Через 50 лет работы они станут непригодными для службы, и их придется каким-то образом уничтожать. Не нанесет ли это колоссальный вред природе? Стоит также учитывать, что солнечная энергия - это непостоянный ресурс, эффективность получения которого зависит от времени суток и погоды. А это является существенным недостатком.

Но и плюсы, конечно, есть. Солнечную энергию можно добывать практически в любой точке Земли, а оборудование для ее получения и преобразования может быть настолько маленьким, что поместится на тыльной стороне смартфона. Что еще немаловажно, это возобновляемый ресурс, то есть количество солнечной энергии будет оставаться неизменным еще как минимум тысячи лет.

Перспективы

Развитие технологий в области солнечной энергетики должно привести к снижению затрат на создание элементов. Уже сейчас появляются стеклянные панели, которые могут быть установлены на окнах. Развитие нанотехнологий позволило изобрести краску, которая будет напыляться на солнечные батареи и сможет заменить кремниевый слой. Если стоимость солнечной энергии действительно снизится в несколько раз, ее популярность также вырастет многократно.

Создание маленьких панелей для индивидуального применения позволит людям в любых условиях использовать солнечную энергию - дома, в машине или даже за городом. Благодаря их распространению снизится нагрузка на централизованные электросети, поскольку люди смогут самостоятельно зарядить мелкую электронику.

Специалисты компании Shell полагают, что к 2040 году около половины энергии в мире будет создаваться за счет возобновляемых ресурсов. Уже сейчас в Германии потребление солнечной энергии активно растет, а мощность батарей составляет более 35 Гигаватт. Япония также активно развивает эту отрасль. Две эти страны - лидеры потребления солнечной энергии в мире. Вероятно, скоро к ним присоединятся и Соединенные Штаты.

Другие альтернативные источники энергии

Ученые не перестают ломать голову над тем, что еще можно использовать для получения электричества или тепла. Приведем примеры наиболее перспективных альтернативных источников энергии.

Ветряки сейчас можно встретить практически в любой стране. Даже на улицах многих российских городов устанавливают фонари, которые сами обеспечивают себя электричеством за счет энергии ветра. Наверняка их себестоимость выше средней, но зато со временем они эту разницу возместят.

Достаточно давно была придумана технология, позволяющая получать энергию, используя разницу температур воды на поверхности океана и на глубине. Китай активно собирается развивать это направление. В ближайшие годы у берегов Поднебесной собираются построить крупнейшую электростанцию, работающую по этой технологии. Существуют и другие способы использования моря. Например, в Австралии планируют создать электростанцию, генерирующую энергию из силы течений.

Есть и многие другие или тепла. Но на фоне многих других вариантов солнечная энергия - это действительно перспективное направление развития науки.

Солнце - неисчерпаемый, экологически безопасный и дешевый источник энергии. Как заявляют эксперты, количество солнечной энергии, которая поступает на поверхность Земли в течение недели, превышает энергию всех мировых запасов нефти, газа, угля и урана 1 . По мнению академика Ж.И. Алферова, «человечество имеет надежный естественный термоядерный реактор - Солнце. Оно является звездой класса «Ж-2», очень средней, каких в Галактике до 150 миллиардов. Но это - наша звезда, и она посылает на Землю огромные мощности, преобразование которых позволяет удовлетворять практически любые энергетические запросы человечества на многие сотни лет». Причем, солнечная энергетика является «чистой» и не оказывает отрицательного влияния на экологию планеты 2 .

Немаловажным моментом является тот факт, что сырьем для изготовления солнечных батарей является один из самых часто встречающихся элементов - кремний. В земной коре кремний - второй элемент после кислорода (29,5% по массе) 3 . По мнению многих ученых, кремний - это «нефть двадцать первого века»: в течение 30 лет один килограмм кремния в фотоэлектрической станции вырабатывает столько электричества, сколько 75 тонн нефти на тепловой электростанции.


Однако некоторые эксперты полагают, что солнечную энергетику нельзя назвать экологически безопасной ввиду того, что производство чистого кремния для фотобатарей является весьма «грязным» и очень энергозатратным производством. Наряду с этим, строительство солнечных электростанций требует отведения обширных земель, сравнимых по площади с водохранилищами ГЭС. Еще одним недостатком солнечной энергетики, по мнению специалистов, является высокая волатильность. Обеспечение эффективной работы энергосистемы, элементами которых являюстя солнечные электростанции, возможно при условии:
- наличия значительных резервных мощностей, использующих традиционные энергоносители, которые можно подключить ночью или в пасмурные дни;
- проведения масштабной и дорогостоящей модернизации электросетей 4 .

Несмотря на указанный недостаток, солнечная энергетика продолжает свое развитие в мире. Прежде всего, ввиду того, что лучистая энергия будет дешеветь и уже через несколько лет составит весомую конкуренцию нефти и газу.

В настоящий момент в мире существуют фотоэлектрические установки , преобразующие солнечную энергию в электрическую на основе метода прямого преобразования, и термодинамические установки , в которых солнечная энергия сначала преобразуется в тепло, затем в термодинамическом цикле тепловой машины преобразуется в механическую энергию, а в генераторе преобразуется в электрическую.

Солнечные элементы как источник энергии могут применяться:
- в промышленности (авиапромышленность, автомобилестроение и т.п.),
- в сельском хозяйстве,
- в бытовой сфере,
- в строительной сфере (например, эко-дома),
- на солнечных электростанциях,
- в автономных системах видеонаблюдения,
- в автономных системах освещения,
- в космической отрасли.

По данным Института Энергетической стратегии, теоретический потенциал солнечной энергетики в России составляет более 2300 млрд. тонн условного топлива, экономический потенциал - 12,5 млн. т.у.т. Потенциал солнечной энергии, поступающей на территорию России в течение трех дней, превышает энергию всего годового производства электроэнергии в нашей стране.
Ввиду расположения России (между 41 и 82 градусами северной широты) уровень солнечной радиации существенно варьируется: от 810 кВт-час/м 2 в год в отдаленных северных районах до 1400 кВт-час/м 2 в год в южных районах. На уровень солнечной радиации оказывают влияние и большие сезонные колебания: на ширине 55 градусов солнечная радиация в январе составляет 1,69 кВт-час/м 2 , а в июле - 11,41 кВт-час/м 2 в день.

Потенциал солнечной энергии наиболее велик на юго-западе (Северный Кавказ, район Черного и Каспийского морей) и в Южной Сибири и на Дальнем Востоке.

Наиболее перспективные регионы в плане использования солнечной энергетики: Калмыкия, Ставропольский край, Ростовская область, Краснодарский край, Волгоградская область, Астраханская область и другие регионы на юго-западе, Алтай, Приморье, Читинская область, Бурятия и другие регионы на юго-востоке. Причем некоторые районы Западной и Восточной Сибири и Дальнего Востока превосходит уровень солнечной радиации южных регионов. Так, например, в Иркутске (52 градуса северной широты) уровень солнечной радиации достигает 1340 кВТ-час/м 2 , тогда как в Республике Якутия-Саха (62 градуса северной широты) данный показатель равен 1290 кВт-час/м 2 . 5

В настоящее время Россия обладает передовыми технологиями по преобразованию солнечной энергии в электрическую. Есть ряд предприятий и организаций, которые разработали и совершенствуют технологии фотоэлектрических преобразователей: как на кремниевых, так и на многопереходных структурах. Есть ряд разработок использования концентрирующих систем для солнечных электростанций.

Законодательная база в сфере поддержки развития солнечной энергетики в России находится в зачаточном состоянии. Однако первые шаги уже сделаны:
- 3 июля 2008г.: Постановление Правительства №426 «О квалификации генерирующего объекта, функционирующего на основе использования возобновляемых источников энергии»;
- 8 января 2009г.: Распоряжение Правительства РФ N 1-р «Об Основных направлениях государственной политики в сфере повышения энергетической эффективности электроэнергетики на основе использования возобновляемых источников энергии на период до 2020 г.»

Были утверждены целевые показатели по увеличению к 2015 и 2020 годам доли ВИЭ в общем уровне российского энергобаланса до 2,5% и 4,5% соответственно 6 .

По разным оценкам, на данный момент в России суммарный объем введенных мощностей солнечной генерации составляет не более 5 МВт, большая часть из которых приходится на домохозяйства. Самым крупным промышленным объектом в российской солнечной энергетике является введенная в 2010 году солнечная электростанция в Белгородской области мощностью 100 кВт (для сравнения, самая крупнейшая солнечная электростанция в мире располагается в Канаде мощностью 80000 кВт).

В настоящий момент в России реализуется два проекта: строительство солнечных парков в Ставропольском крае (мощность - 12 МВТ), и в Республике Дагестан (10 МВт) 7 . Несмотря на отсутствие поддержки возобновляемой энергетики, ряд компаний реализует мелкие проекты в сфере солнечной энергетике. К примеру, «Сахаэнерго» установило маленькую станцию в Якутии мощностью 10 кВт.

Существуют маленькие установки в Москве: в Леонтьевском переулке и на Мичуринском проспекте подъезды и дворы нескольких домов освещаются с помощью солнечных модулей, что сократило расходы на освещение на 25%. На Тимирязевской улице солнечные батареи установлены на крыше одной из автобусных остановок, которые обеспечивают работу справочно-информационной транспортной системы и Wi-Fi.

Развитие солнечной энергетики в России обусловлено рядом факторов:

1) климатические условия: данный фактор влияет не только на год достижения сетевого паритета, но и на выбор той технологии солнечной установки, которая наилучшим образом подходит для конкретного региона;

2) государственная поддержка: наличие законодательно установленных экономических стимулов солнечной энергетики оказывает решающее значение на
ее развитие. Среди видов государственной поддержки, успешно применяющихся в ряде стран Европы и США, можно выделить: льготный тариф для солнечные электростанции, субсидии на строительство солнечных электростанций, различные варианты налоговых льгот, компенсация части расходов по обслуживанию кредитов на приобретение солнечных установок;

3) стоимость СФЭУ (солнечные фотоэлектрические установки): сегодня солнечные электростанции являются одной из наиболее дорогих используемых технологий производства электроэнергии. Однако по мере снижения стоимости 1 кВт*ч выработанной электроэнергии солнечная энергетика становится конкурентоспособной. От снижения стоимости 1Вт установленной мощности СФЭУ (~3000$ в 2010 году) зависит спрос на СФЭУ. Снижение стоимости достигается за счет повышения КПД, снижения технологических затрат и снижения рентабельности производства (влияние конкуренции). Потенциал снижения стоимости 1 кВт мощности зависит от технологии и лежит в диапазоне от 5% до 15% в год;

4) экологические нормы: на рынок солнечной энергетики положительно может повлиять ужесточение экологических норм (ограничений и штрафов) вследствие возможного пересмотра Киотского протокола. Совершенствование механизмов продажи квот на выбросы может дать новый экономический стимул для рынка СФЭУ;

5) баланс спроса и предложения электроэнергии: реализация существующих амбициозных планов по строительству и реконструкции генерирующих и электросетевых
мощностей компаний, выделившихся из РАО «ЕЭС России» в ходе реформы отрасли, существенно увеличит предложение электроэнергии и может усилить давление на цену
на оптовом рынке. Однако выбытие старых мощностей и одновременное повышение спроса повлечет за собой увеличение цены;

6) наличие проблем с технологическим присоединением: задержки с выполнением заявок на технологическое присоединение к централизованной системе электроснабжения являются стимулом к переходу к альтернативным источникам энергии, в том числе к СФЭУ. Такие задержки определяются как объективной нехваткой мощностей, так и неэффективностью организации технологического присоединения сетевыми компаниями или недостатком финансирования технологического присоединения из тарифа;

7) инициативы местных властей: региональные и муниципальные органы управления могут реализовывать собственные программы по развитию солнечной энергетики или, более широко, возобновляемых/нетрадиционных источников энергии. Сегодня такие программы уже реализуются в Красноярском и Краснодарском краях, Республике Бурятия и др.;

8) развитие собственного производства: российское производство СФЭУ может оказать положительное влияние на развитие российского потребления солнечной энергетики. Во-первых, благодаря собственному производству усиливается общая осведомленность населения о наличии солнечных технологий и их популярность. Во-вторых, снижается стоимость СФЭУ для конечных потребителей за счет снижения промежуточных звеньев дистрибьюторской цепи и за счет снижения транспортной составляющей 8 .

6 http://www.ng.ru/energy/2011-10-11/9_sun_energy.html
7 Организатор - компания ООО «Хевел», учредителями которой являются Группа компаний «Ренова» (51%) и Государственная корпорация «Российская корпорация нанотехнологий» (49%).

Принцип преобразования солнечной энергии, её применение и перспективы

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Кстати, очень много ресурсов на планете представляют собой производные от солнечной энергии. К примеру, ветер, который является ещё одним возобновляемым источников, не дул бы без солнца. Испарение воды и накопление её в реках также происходит под действием солнца. А вода, как известно, используется гидроэнергетике. Биотоплива также не было бы без солнца. Поэтому, помимо прямого источника энергии, солнце влияет на другие сферы энергетики.

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».



Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы. Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей. Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Стоит сказать, что батареи на основе полупроводников достаточно долговечны и не требуют квалификации для ухода за ними. Поэтому их чаще всего используют в быту. Есть также целые солнечные электростанции. Как правило, они создаются в странах с большим числом солнечных дней в году. Это Израиль, Саудовская Аравия, юг США, Индия, Испания. Сейчас есть и совсем фантастические проекты. Например, солнечные электростанции вне атмосферы. Там солнечный свет ещё не потерял энергию. То есть, излучение предлагается улавливать на орбите и затем переводить в микроволны. Затем в таком виде энергия будет отправляться на Землю.

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.



Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.




Основные способы преобразования энергии солнца представлены ниже:
  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или . Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Термовоздушный способ преобразования подразумевает получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.

Солнечная энергия, как альтернативный источник энергии, используется уже тысячи лет. Единственное, что меняется — технологии и эффективность применяемых устройств. Энергия солнца относится к возобновляемым источникам, что означает ее способность восстанавливаться естественным путем, без человеческого участия. К преимуществам стоит отнести экологическую чистоту, неограниченные возможности, безопасность и уникальную эффективность использования.

Доказано, что 1м 2 «огненного диска» выделяет почти 63 кВт энергии, что в эквиваленте соответствует мощности миллиона электрических лампочек. В целом Солнце обеспечивает Землю 80 000 млрд. кВ, а это в несколько раз превышает мощность всех существующих на планете электростанций. Вот почему применение солнечной энергии на практике является одной из главных задач для современного общества.

Особенности преобразования

Недоработкой современной науки является неспособность прямого потребления энергии солнца. По этой причине разработаны специальные приборы, обеспечивающие преобразование солнечной энергии в электрическую или тепловую. В первом упоминании речь идет о батареях , а во втором — о коллекторах .

Сегодня разработано несколько вариантов преобразования:

  • Термовоздушная энергетика . В ее основе лежит использование энергии солнца для получения потока воздуха, направляемого в турбогенератор. Популярность получают электростанции аэростатного типа, в которых генерируется водяной пар, благодаря нагреву аэростатной поверхности со специальным покрытием. Преимущество методики заключается в способности накапливать необходимый объем пара для обеспечения работы системы даже в темное время суток, при отсутствии солнечного света.
  • Фотовольтаика . Особенность методики заключается в применении специальных панелей, имеющих фотоэлектрическую базу. Представители — солнечные батареи. В основе изделий лежит кремний, а толщина рабочей поверхности равна нескольким десятым миллиметра. Размещать конструкции можно в любом месте. Главным условием является максимальное поступление лучей.

Кроме фотопластин, для преобразования солнечной энергии могут использоваться тонкопленочные панели, обладающие меньшей толщиной. Их главным недостатком является небольшая эффективность.

  • Гелиотремальная энергетика — направление, суть которого заключается в поглощении света поверхностью с последующим фокусированием тепла для нагрева. В бытовой сфере этот вид превращения солнечной энергии используется для прогрева. В промышленности эта методика применяется для получения электричества с помощью тепловых машин.

Как может использоваться солнечная энергия?

Использование солнечной энергии возможно с применением двух типов систем — пассивных и активных. Рассмотрим их подробнее.

Пассивные — системы, в которых не предусмотрено каких-либо сложных преобразований. Одним из примеров является металлическая емкость, которая окрашена в черный цвет и наполненная водой. Лучи солнца попадают на поверхность, нагревают металл, а вместе с ним и жидкость внутри. Существуют и более продвинутые способы пассивного использования энергии, предназначенные для проектирования сооружений, выбора стройматериалов, учета климата и решения других задач. Чаще всего пассивные системы применяются для охлаждения, обогрева или освещения зданий.

Активные — устройства, в которых для превращения солнечной энергии применяются специальные коллекторы. Особенность последних заключается в поглощении лучей солнца и их последующее преобразование в тепло, которое с помощью теплоносителя обеспечивает обогрев зданий или воды. Сегодня солнечные коллекторы применяются во многих сферах деятельности — сельском хозяйстве, бытовом и прочих секторах, где требуется тепло.

Принцип действия солнечного коллектора легко проверить на практике — достаточно положить на подоконник какой-либо предмет и убедиться, что на него попадают лучи солнца. Изделие нагревается даже при минусовой температуре на улице. В этом и заключается особенность использования солнечной энергии с помощью коллектора.

В основе устройства лежит теплоизолированная пластина, которая изготавливается с использованием теплопроводящего материала. Сверху она покрывается темной краской. Лучи солнца проходят через промежуточный элемент, нагревают пластинку, а после накопленная тепловая энергия применяется для нагрева здания. Направление теплого потока возможно с помощью вентилятора или естественным путем.

Недостаток системы заключается в необходимости дополнительных затрат на покупку и установку вентилятора. Кроме того, солнечные коллекторы эффективны только световой день, поэтому полностью заменить основной источник обогрева не получится. Для повышения КПД устройства необходимо устанавливать коллектор в главный источник вентиляции или тепла.

Такие коллекторы бывают двух типов:

  1. Плоскими. Такие устройства состоят из поглотителей солнечной энергии, покрытия (используется стекло с низким содержанием металлических частиц), термоизолирующего слоя и трубопровода. Коллектор улавливает солнечные лучи и выдает тепловую энергию. Место для монтажа — крыша. При этом батарея может быть встроена в поверхность или иметь вид отдельного элемента.
  2. Вакуумными. Особенность солнечных коллекторов заключается в универсальности и возможности применения в течение всего года. В основе лежат вакуумные трубки, состоящие из боросиликатного стекла. На внутренней части стенки нанесено специальное покрытие, улучшающее восприятие солнечного света. Целью такой конструкции является минимальное отражение лучей. Для большей эффективности в промежутках между трубками присутствует вакуум, который поддерживается газораспределителем бариевого типа. Преимущество вакуумных коллекторов в том, что они могут работать на морозе и при облачной погоде. В последнем случае они поглощают энергию ИК лучей.

Наибольшим спросом в промышленности и быту пользуются солнечные батареи, которые преобразуют энергию солнца в тепло. В основе таких устройств лежат фитоэлектрические преобразователи.

Преимущества — простота конструкции, удобство монтажа, минимальные требования к обслуживанию, а также повышенный ресурс. Для установки солнечной батареи не нужно дополнительного места. Главным условием нормальной работы является открытость свету и отсутствие затенения. Ресурс исчисляется десятилетиями, что и объясняет подобную популярность изделий.

Батареи, использующие энергию солнца, имеют и ряд недостатков:

  • Повышенная чувствительность к загрязнению. По этой причине батареи устанавливают под углом 45 градусов, чтобы снег и дождь помогали очищать поверхность.
  • Недопустимость чрезмерного нагрева. Если температура достигает 100-125 градусов Цельсия, возможно отключение устройства из-за повышения допустимой температуры. В такой ситуации потребуется специальная система охлаждения.
  • Высокая стоимость. Этот недостаток нельзя назвать полноценным, ведь солнечная батарея имеет большой срок службы, а затраты на ее покупку и установку окупаются в течение нескольких лет.

Итоги

Современное общество знает, где используется солнечная энергия, и активно применяет накопленный опыт на практике. Возможности «огненного диска» необходимы для получения электрической энергии, обогрева и охлаждения помещений, а также обеспечения вентиляции. С ростом стоимости нефти и газа наблюдается постепенный переход на альтернативные и более доступные источники. Например, в Германии почти половина домов оборудовано солнечными коллекторами для нагрева воды. Во многих государствах работают специальные программы, направленные на использование энергии солнца. И данная тенденция с каждым годом только набирает обороты.