Памятью и большим опытом работы. Как работает память и хакерские способы ее улучшить

КАК РАБОТАЕТ НАША ПАМЯТЬ

Память - это мыслитель­ный процесс, включающий в себя запись, хранение и извле­чение информации. Запись информации осуществляется посредством акта запомина­ния, а ее извлечение - посред­ством акта вспоминания. Каче­ство запоминания обусловлено вниманием человека к объек­ту записи.

Внимание представляет со­бой форму организации психи­ческой деятельности, проявля­ющуюся в избирательной на­правленности (селективнос­ти), концентрации и относи­тельной устойчивости. Концентрация внимания обуслов­лена усилением возбуждения в доминантном очаге коры го­ловного мозга, сопровождаю­щейся угнетением всей осталь­ной части коры. По этой при­чине, например, глубоко по­груженные в работу люди не слышат звонка у входной две­ри и даже на дотрагивание ре­агируют лишь спустя некото­рое время.

Противоположным акту за­поминания является забыва­ние. Как это ни звучит пара­доксально, но забывание слу­жит важным условием запоми­нания, поскольку оно разгру­жает центральную нервную систему, освобождая место для новых связей. Память опреде­ляется работой всего головно­го мозга, но в первую оче­редь - это биологический фе­номен, обусловленный дея­тельностью органов чувств. В зависимости от того, какой орган чувств принимает наи­более активное участие в акте записи информации, различа­ют несколько разновидностей памяти: визуальная (зритель­ная), вербальная (связанная с функцией слуха), обонятель­ная, осязательная и др. В био­логическом мире важную роль играет генетическая память, определяющая миграции птиц и рыб, обусловливающая стад­ные инстинкты. Человеческая память представляет собой бесконечно более сложный ме­ханизм - это функция мозга, нейронная активность которо­го позволяет фильтровать, со­хранять и уничтожать воспо­минания.

Около 60 процентов людей пользуются в основном зри­тельной памятью. Они легко восстанавливают в воображе­нии виденные некогда места, предметы, лица, страницы га­зет. Другие люди как будто с большей легкостью запомина­ют звуки и слова, и возникаю­щие в их уме ассоциации час­то представляют собой различ­ные ритмы и каламбуры.

В зависимости от времен­ной установки человеческую память подразделяют на не­посредственную, кратковре­менную, долговременную, скользящую.

Непосредственная (сен­сорная) память - это память автоматическая, в которой одно впечатление мгновенно сменяется следующим. При­мером такого процесса служит печатание на машинке: как только буква напечатана, чело­век тут же забывает ее, чтобы перейти к следующей.

Кратковременная па­мять - это оперативная (ра­бочая) память, способная од­новременно удерживать до семи элементов в течение мак­симум тридцати секунд. Она действует, например, когда вы набираете номер телефона. Без оперативной памяти мно­гие привычные действия со­вершались бы гораздо мед­леннее. Этот вид памяти по­зволяет выбрасывать из созна­ния информацию, как только она стала ненужной.

Долговременная память должна оставлять заметные следы в сознании на дни, ме­сяцы и даже годы, поэтому ее работу определяют более сложные механизмы записи информации, действующиенанескольких уровнях: чувствен­ном, эмоциональном и интел­лектуальном

Скользящая память - са­мая короткая из всех видов долговременной памяти. Тако­го рода память развита, напри­мер, у авиадиспетчеров: она позволяет им на несколько минут сосредоточить внима­ние на изображении движу­щейся точки на экране, а пос­ле посадки самолета тут же забыть о ней, переключив вни­мание на следующую точку.

Если информация предназ­начена для использования в ближайшем будущем (подго­товка к экзаменам, необходи­мость запомнить некий адрес), постоянное мысленное повто­рение помогает лишь кратков­ременно удержать ее в памяти.

Для закрепления следа в памя­ти на длительное время требу­ется более высокая степень обработки материала. Необходи­мо определить для себя значе­ние воспринимаемой инфор­мации и дать время на обдумы­вание, обобщить и проанали­зировать ее.

Долговременная память основана на наблюдении, ана­лизе и составлении суждения. Любое суждение включает в себя впечатления и эмоции. Сильные эмоции действуют подобно раскаленному клейму и оставляют в памяти неизгла­димые следы. Человек спосо­бен повысить качество записи материалов в памяти, сосредо­точившись на своих эмоциях, развивая наблюдательность и делая комментарии по поводу данного эмоционального или интеллектуального контекста. Именно этим объясняется, по­чему какие-то детали прошло­го люди помнят лучше других.

Если задуманное челове­ком к высказыванию принять за 100 процентов, то в словес­ные формы (предложения) об­лекается и высказывается ок­ружающим только 8О процен­тов. Выслушивается из задуманного 70 процентов, воспри­нимается и понимается 60 про­центов, а в долговременной па­мяти остается от 10 до 24 про­центов.

В среднем человек запоминает 1/5 части то­го, что услышит, и 3/5 того, что увидит. Из того, что человеку покажут и объяснят, он за­поминает 4/5. Наилучшим временем суток для сознатель­ной работы памяти является промежуток от 10 до 12 часов, когда организм максимально ус­тойчив к кислородному голоданию, а также пос­ле 20 часов.

На подсознательном уров­не процесс запоминания, фик­сации в коре головного мозга накопившейся за день новой информации более интенсивно протекает в каждом следую­щем цикле парадоксальной фазы сна. Принимая во внима­ние, что в норме у человека за ночь наблюдается до 4-5 полу­торачасовых циклов сна, мож­но считать, что наилучшая "запоминающая" функция сна проявляет себя где-то за два часа до пробуждения. Что касается времени года, то наилучшим для работы памяти является летний период.

Экспериментально доказано, что в процессе запомина­ния однородного материала (например, стихотворения) легче всего усваиваются нача­ло и конец, а наиболее труд­но-средняя часть. Запоминание улучшается, если посте­пенно повышать сложность ус­ваиваемого материала.

Повторять изучае­мый материал очень важ­но с интервалами. Не­прерывное повторение, заучивание вплоть до полного запоминания наиболее нецелесообраз­но и неэкономично.

Особенностью человеческой памяти является ее способность с меньшими затратами труда и времени изучать другие иностранные языки после того, как уже усвоен один из них.

Полагают, что структуры, ответственные за память, размещаются в разных участках головного мозга - в зависимости оттого, на каких реакциях организма (чувственных, эмоциональных или интеллектуальных) они основаны. За память отвечают отдельные участки коры головного мозга, лимбическая система и мозжечок. Но основная часть нейрофизиологической деятельности, определяющей работу па­мяти, происходит в гиппокампе и в височной доле каждого из полушарий. Если височная доля повреждена на одной сто­роне мозга, процессы запоми­нания могут еще протекать, хотя и с некоторыми наруше­ниями. Но при двустороннем повреждении способность со­знания к записи и хранению информации полностью про­падает. Это происходит в ре­зультате физической травмы или в связи с дефицитом нейрохимических элементов, как, например, при болезни Альцгеймера.

Работа памяти обусловлена деятельностью нервных кле­ток - нейронов. Сигналы от одного нейрона к другому пе­редают так называемые нейромедиаторы - особые веще­ства (например, ацетилхолин), которые в большом количестве содержатся в гиппокампе. При нехватке ацетилхолина пропа­дает способность к усвоению знаний и функционирует лишь спонтанная память, основан­ная на чувственных реакциях организма.

Метаболические процессы организма включают в себя окисление глюкозы и жиров для получения энергии, часть которой расходуется на синтез ацетилхолипа в мозгу. При гар­монично протекающем старе­нии организма количество син­тезируемого ацетилхолипа уменьшается, но остается до­статочным для того, чтобы нормально мыслить. Одним из возможных последствий недо­статка ацетилхолина и других нейромедиаторов может слу­жить торможение мыслитель­ных процессов, наносящее ущерб памяти: у человека на­блюдается несколько замед­ленная реакция на внешние сигналы как во время наблю­дения и записи информации, так и во время извлечения ее из памяти. Чтобы по мере ста­рения не терять способности к нормальной жизнедеятельнос­ти, разумно всегда сохранять спокойствие (известно, что па­мять человека слабеет пропор­ционально росту его беспокой­ства). Если человек начинает нервничать по поводу кратков­ременных задержек в работе своей памяти, то он только ухудшает положение. Для ком­пенсации снижения умствен­ной активности нужно обу­читься новым стратегиям мышления, облегчающим и ус­коряющим извлечение инфор­мации из памяти, тогда будет обеспечена нормальная рабо­та последней до глубокой ста­рости (при условии удовлетво­рительного общего состояния здоровья).

ОТ ЧЕГО ЗАВИСИТ КАЧЕСТВО ПАМЯТИ

С возрастом память слабе­ет, но эффективность ее рабо­ты неодинакова у пожилых людей, как неодинакова она и у детей. Наиболее однородны­ми в этом отношении являют­ся люди среднего возраста. Дети и пожилые люди испы­тывают много идентичных трудностей в отношении дея­тельности памяти. В частно­сти, у них более короткий, по сравнению с обычным, пери­од концентрации внимания. Они испытывают затруднения при анализе информации и не способны к спонтанной орга­низации мыслительного про­цесса. Они не умеют точно оценивать для себя значение воспринимаемой информации и испытывают затруднения при формировании ассоциа­ций, относящихся к информа­ции, которую необходимо за­помнить. И те, и другие плохо фиксируют информацию в памяти. Главное же различие между детьми и стариками состоит в том, что дети лучше помнят недавние события, в то время как старики - собы­тия, более удаленные во вре­мени (поскольку новые впе­чатления они обрабатывают недостаточно эффективно).

Вспомните:

Что называют сенсорной системой?

Ответ. Сенсорная система - часть нервной системы, ответственная за восприятие определённых сигналов (так называемых сенсорных стимулов) из окружающей или внутренней среды. Сенсорная система состоит из рецепторов, нейронных проводящих путей и отделов головного мозга, ответственных за обработку полученных сигналов. Наиболее известными сенсорными системами являются зрение, слух, осязание, вкус и обоняние. С помощью сенсорной системы можно почувствовать такие физические свойства, как температура, вкус, звук или давление.

Также сенсорными системами называют анализаторы. Понятие «анализатор» ввёл российский физиолог И. П. Павов. Анализаторы (сенсорные системы) - это совокупность образований, которые воспринимают, передают и анализируют информацию из окружающей и внутренней среды организма.

Вопросы после § 34

Какие структуры мозга отвечают за формирование памяти?

Ответ. За память отвечают следующие структуры мозга - гиппокамп и кора:

Кора головного мозга – отвечает за память о впечатлениях, воспринятых через органы чувств, и ассоциации между ощущениями;

Гиппокамп – связывает в единое целое факты, даты, имена, впечатления, имеющие эмоциональную значимость.

Кроме того:

Мозжечок – он участвует в формировании памяти при повторении и выработке условных рефлексов;

Полосатое тело – это совокупность структур в переднем мозге, участвует в формировании привычек.

Как работает «паутина памяти»?

Ответ. Существует переключение памяти, способное оживлять нужные воспоминания. При этом активизируются нервные узлы коры больших полушарий головного мозга и гиппокампа. Такие связи составляют «паутину памяти». Чем больше связей, тем больше «паутина».

Как связаны сенсорная, кратковременная и долговременная память?

Ответ. Основные процессы памяти: запоминание, сохранение и воспроизведение. Исходя из продолжительности этих процессов, различают три вида памяти. Сенсорная или мгновенная память содержит информацию, полученную от рецепторов. Она сохраняет следы воздействия на очень короткое время – от 0,1 секунды до нескольких секунд. Если поступившие сигналы не привлекают внимание высших отделов мозга, следы памяти стираются и рецепторы воспринимают новые сигналы. Если информация от рецепторов важна, она передается в кратковременную память. В ней храниться сведения, о которых человек думает на данный момент. Если информация не вводится повторно, она будет потеряна. Только воспоминания, которые закреплены повторением или связаны с другими воспоминаниями, поступают в долговременную память, где могут храниться часы, месяцы, годы.

Как развивается память?

Ответ. Непроизвольная память формируется без контроля сознания. Благодаря такой памяти приобретается большая часть жизненного опыта человека. Произвольная память включает сознание, требует волевых усилий, так как человек ставит перед собой цель запомнить необходимую информацию. Моторная или двигательная память – это запоминание и воспроизведение различных движений, основа двигательных навыков. Словесно-логическая память позволяет запомнить и воспроизвести мысли, выраженные словами и другими знаками. Благодаря этому виду памяти человек оперирует понятиями, понимает смысл усваиваемой информации..Образная память позволяет ему сохранить и воспроизвести зрительные, слуховые, обонятельные образы. Эмоциональная память – память чувств. Известно, что лучше запоминается то, что связано с положительными или отрицательными эмоциями. Все виды памяти тесно взаимосвязаны.

Память - это сложноустроенная сеть, которая тянется от органов чувств до самых сложных участков мозга. Она находит проявление во всем: от простых движений до тяжелых задач, и в конечном итоге делает нас теми, кто мы есть. В соответствии с тремя неврологическими процессами память может быть сенсорной, кратковременной или долговременной.

Функционируя автоматически, мозг создает сенсорные воспоминания бессознательно. Таким образом, сенсорная память - тип пассивного восприятия. Для ее работы не требуется внимание, а воспоминания хранятся в течение кратчайшего промежутка времени, возможно, секунды. Сенсорная память имеет разновидности в соответствии с основными чувствами человека. Иконическая (зрение), эхоическая (слух) и тактильная (осязание) наиболее тщательно исследованы.

Иконическая память включает в себя как задерживающую способность глаз, так и данные, которые фиксируются зрением, а после обрабатываются мозгом. Соответствующие воспоминания начинают формирование с фоторецепторов на сетчатке, которые передают информацию в ганглиозные клетки, затем в первичную зрительную кору в затылочной доле и, наконец, в височную верхнюю борозду.

Аналог эхоической памяти - накопительный резервуар, в котором сохранятся звуки таким образом, что их можно разобрать спустя некоторое время после воспроизведения. Одним из распространенных примеров работы эхоической памяти можно назваться ситуацию, когда человек переспрашивает у собеседника последний заданный вопрос и отвечает на него прежде, чем тот его повторяет. Деятельность этой разновидности памяти протекает в нескольких областях мозга, в том числе в первичной слуховой коре, в левых частях префронтальной, премоторной и теменной коры, в верхней височной и нижней височной извилине.

Тактильная память основывается на мимолетных ощущениях, таких как зуд и боль. Она распространяется, начиная с нервов, по всему организму: через спинной мозг к постцентральной извилине теменной доли. Ощущения, описывающие текстуру и плотность объектов, воспринимаются в теменной покрышке, а их расположение активизирует правую верхнюю теменную и височно-теменную доли.

Хотя сохранение воспоминаний в кратковременной памяти происходит в течение гораздо более длительного времени, чем в сенсорной, ее длительность составляет лишь 20-30 секунд. Так как по своей природе она опирается на менее сложные структуры (и, следовательно, гораздо меньшее количество нейронов), чем долговременная память, емкость кратковременной памяти ограничена; в зависимости от человека (и языка) ее вместительность составляет всего около 7 единиц информации. Хотя это кажется смехотворно малым количеством, попробуйте быстро посмотреть, а затем вспомнить случайный набор из 10 цифр или слов. Это магическое число 7 может быть увеличено несколькими способами, но все они связаны с процессом фрагментирования. Номер чьего-то мобильного телефона представляет собой набор из одиннадцати цифр, но его легко запомнить, потому что память воспринимает эту информацию «порциями». Префронтальная кора играет ключевую роль в работе кратковременной памяти. Здесь мозг обрабатывает как визуальную информацию, так и фонологическую. Примечательно, что кратковременная память, как полагают, в первую очередь является фонологической. Например, носители китайского языка, большинство слов в котором состоят из одного слога, могут помнить 10 цифр по сравнению с нашими семью. Кратковременные воспоминания легко забываются, когда нервные импульсы перестают нести актуальную информацию, переключаясь на другую.

Процесс образования долгосрочной памяти начинается с кратковременной, которая с рядом операций позволяет информации сохраниться. Когда кратковременные воспоминания перемещаются на длительное хранение, гиппокамп производит новые белки. Они изменяют выбранную группу нейронов, а те отправляют электрохимические сообщения, создавая нервные пути. Пациенты с болезнью Альцгеймера могут восстановить воспоминания из детства, но забывают актуальную информацию, потому что поврежденный гиппокамп больше не в состоянии производить новые белки, и, следовательно, новые воспоминания, но сильные нервные пути, проделанные в молодости, позволяют хранить старую информацию. Долговременные воспоминания сложнее забыть. Для этого они должны не использоваться в течение длительного времени, либо на них должны «налечь» новые.

Нейробиологи из Канады и США обнаружили, что в запоминании простых навыков участвуют не все нервные клетки, получающие необходимую для этого информацию, а лишь около четверти из них. То, какие именно нейроны примут участие в формировании долговременной памяти, зависит от концентрации регуляторного белка CREB в клеточном ядре. Если искусственно повысить концентрацию CREB в некоторых нейронах, запоминать будут именно они. Если заблокировать CREB в части нейронов, роль запоминающих возьмут на себя другие нервные клетки.

Одним из самых блестящих достижений нейробиологии XX века стала расшифровка молекулярных механизмов памяти. Нобелевский лауреат Эрик Кандел и его коллеги сумели показать, что для формирования самой настоящей памяти - как кратковременной, так и долговременной - достаточно всего трех нейронов, определенным образом соединенных между собой.

Память изучалась на примере формирования условного рефлекса у гигантского моллюска - морского зайца Aplysia. Моллюску осторожно трогали сифон, и тотчас вслед за этим сильно били по хвосту. После такой процедуры моллюск некоторое время реагирует на легкое прикосновение к сифону бурной защитной реакцией, но вскоре всё забывает (кратковременная память). Если «обучение» повторить несколько раз, формируется стойкий условный рефлекс (долговременная память).

Оказалось, что процесс обучения и запоминания не имеет ничего общего с какими-то высшими, идеальными или духовными материями, а полностью объясняется довольно простыми и совершенно автоматическими событиями на уровне отдельных нейронов. Весь процесс можно полностью воспроизвести на простейшей системе из трех изолированных нервных клеток. Один нейрон (сенсорный) получает сигнал от сифона (в данном случае - чувствует легкое прикосновение). Сенсорный нейрон передает импульс моторному нейрону, который, в свою очередь, заставляет сокращаться мышцы, участвующие в защитной реакции (Aplysia втягивает жабру и выбрасывает в воду порцию красных чернил). Информация об ударе по хвосту поступает от третьего нейрона, который в данном случае играет роль модулирующего. Нервный импульс от одного нейрона к другому передается посредством выброса сигнальных веществ (нейромедиаторов). Точки межнейронных контактов, в которых происходит выброс нейромидиатора, называются синапсами.

За эту картинку Эрику Канделу дали Нобелевскую премию. Здесь показано, как в простейшей системе из трех нейронов формируется кратковременная и долговременная память

На рисунке показаны два синапса. Первый служит для передачи импульса от сенсорного нейрона к моторному. Второй синапс передает импульс от модулирующего нейрона к окончанию сенсорного. Если в момент прикосновения к сифону модулирующий нейрон «молчит» (по хвосту не бьют), в синапсе 1 выбрасывается мало нейромедиатора, и моторный нейрон не возбуждается.

Однако удар по хвосту приводит к выбросу нейромедиатора в синапсе 2, что вызывает важные изменения в поведении синапса 1. В окончании сенсорного нейрона вырабатывается сигнальное вещество cAMP (циклический аденозинмонофосфат). Это вещество активизирует регуляторный белок - протеинкиназу А. Протеинкиназа А, в свою очередь, активизирует другие белки, что в конечном счете приводит к тому, что синапс 1 при возбуждении сенсорного нейрона (то есть в ответ на прикосновение к сифону) начинает выбрасывать больше нейромедиатора, и моторный нейрон возбуждается. Это и есть кратковременная память : пока в окончании сенсорного нейрона много активной протеинкиназы А, передача сигнала от сифона к мышцам жабры и чернильного мешка осуществляется более эффективно.

Если прикосновение к сифону сопровождалось ударом по хвосту много раз подряд, протеинкиназы А становится так много, что она проникает в ядро сенсорного нейрона. Это приводит к активизации другого регуляторного белка - транскрипционного фактора CREB. Белок CREB «включает» целый ряд генов, работа которых в конечном счете приводит к разрастанию синапса 1 (как показано на рисунке) или к тому, что у окончания сенсорного нейрона вырастают дополнительные отростки, которые образуют новые синаптические контакты с моторным нейроном. В обоих случаях эффект один: теперь даже слабого возбуждения сенсорного нейрона оказывается достаточно, чтобы возбудить моторный нейрон. Это и есть долговременная память . Остается добавить, что, как показали дальнейшие исследования, у высших животных и у нас с вами память основана на тех же принципах, что и у аплизии.

После этого необходимого вступления можно перейти к рассказу о том, что, собственно, открыли канадские и американские нейробиологи. Они исследовали формирование у лабораторных мышей условных рефлексов, связанных со страхом. Простейшие рефлексы такого рода формируются в латеральной амигдале (ЛА) - очень маленьком отделе мозга, отвечающем за реакции организма на всякие пугающие стимулы. Мышей приучали, что после того, как раздается определенный звук, их бьет током. В ответ на удар током мышь замирает: это стандартная реакция на испуг. Мыши - умные зверьки, их можно научить многому, и условные рефлексы у них формируются быстро. Обученные мыши замирают, едва заслышав звук, предвещающий опасность.

Ученые обнаружили, что сигнал от нейронов, воспринимающих звук, поступает примерно в 70% нейронов латеральной амигдалы. Однако изменения, связанные с формированием долговременной памяти (рост новых нервных окончаний и т. п.), у обученных мышей происходят лишь в четвертой части этих нейронов (примерно у 18% нейронов ЛА).

Ученые предположили, что между нейронами ЛА, потенциально способными принять участие в формировании долговременной памяти, происходит своеобразное соревнование за право отрастить новые синапсы, причем вероятность «успеха» того или иного нейрона зависит от концентрации белка CREB в его ядре. Чтобы проверить это предположение, мышам делались микроинъекции искусственных вирусов, не способных к размножению, но способных производить полноценный белок CREB либо его нефункциональный аналог CREB S133A . Гены обоих этих белков, вставленные в геном вируса, были «пришиты» к гену зеленого флуоресцирующего белка медузы. В итоге ядра тех нейронов ЛА, в которые попал вирус, начинали светиться зеленым.

Выяснилось, что в результате микроинъекции вирус проникает примерно в такое же количество нейронов ЛА, какое участвует в формировании условного рефлекса. Это случайное совпадение оказалось весьма удобным.

Помимо нормальных мышей, в опытах использовались мыши-мутанты, у которых не работает ген CREB. Такие мыши полностью лишены способности к обучению, они ничего не могут запомнить. Оказалось, что введение вируса, производящего CREB, в ЛА таких мышей полностью восстанавливает способность к формированию условного рефлекса. Но, может быть, увеличение концентрации CREB в некоторых нейронах ЛА просто усиливает реакцию «замирания»?

Чтобы проверить это, были поставлены опыты с более сложным обучением, в которых мышь должна была «осознать» связь между звуком и ударом тока не напрямую, а опосредованно, причем для этого требовалось запомнить определенный контекст, в котором происходило обучение. Для этого недостаточно работы одной лишь ЛА, а требуется еще и участие гиппокампа. В такой ситуации мыши-мутанты не смогли ничему научиться, ведь в гиппокамп им вирусов не вводили. Следовательно, концентрация CREB влияет именно на запоминание, а не на склонность к замиранию.

При помощи серии дополнительных экспериментов удалось доказать, что в запоминании у мышей-мутантов участвуют именно те нейроны ЛА, которые заразились вирусом. Введение вируса в ЛА здоровых мышей не повлияло на их обучаемость. Однако, как и в случае с мышами-мутантами, в запоминании участвовали именно те нейроны ЛА, в которые попал вирус.

Другой вирус, производящий CREB S133A , лишает зараженные нейроны способности запоминать, то есть отращивать новые окончания. Ученые предположили, что введение этого вируса в ЛА здоровых мышей не должно, тем не менее, снижать их обучаемость, поскольку вирус заражает лишь около 20% нейронов ЛА, и роль «запоминающих» возьмут на себя другие, незаразившиеся нейроны. Так и оказалось. Мыши обучались нормально, но среди нейронов, принявших участие в запоминании, практически не оказалось зараженных (то есть светящихся зеленым светом).

Ученые провели еще целый ряд сложных экспериментов, что позволило исключить все иные варианты объяснений, кроме одного - того самого, которое соответствовало их начальному предположению.

Таким образом, в запоминании участвуют не все нейроны, получающие необходимую для этого информацию (в данном случае - «сенсорную» информацию о звуке и «модулирующую» - об ударе током). Почетную роль запоминающих берет на себя лишь некоторая часть этих нейронов, а именно те, в ядрах которых оказалось больше белка CREB. Это, в общем, логично, поскольку высокая концентрация CREB в ядре как раз и делает такие нейроны наиболее «предрасположенными» к быстрому отращиванию новых окончаний.

Неясным остается механизм, посредством которого другие нейроны узнают, что дело уже сделано, победители названы и им самим уже не нужно ничего себе отращивать.

Этот механизм может быть довольно простым. Совершенно аналогичная система регуляции известна у нитчатых цианобактерий, нити которых состоят из двух типов клеток: обычных, занимающихся фотосинтезом, и специализированных «гетероцист», занимающихся фиксацией атмосферного азота. Система работает очень просто: когда сообществу недостает азота, фотосинтезирующие клетки начинают превращаться в гетероцисты. Процесс до определенного момента является обратимым. Клетки, зашедшие по этому пути достаточно далеко, начинают выделять сигнальное вещество, которое не дает превратиться в гетероцисты соседним клеткам. В результате получается нить с неким вполне определенным соотношением обычных клеток и гетероцист (например, 1:20), причем гетероцисты располагаются примерно на равном расстоянии друг от друга.

На мой взгляд, называть подобные регуляторные механизмы «конкуренцией», как это делают авторы статьи, не совсем правильно, акцент тут должен быть иной. Нейрон не получает никакой личной выгоды от того, что именно он примет участие в запоминании. По-моему, здесь уместнее говорить не о конкуренции, а о самой настоящей кооперации.

По материалам: Jin-Hee Han, Steven A. Kushner, Adelaide P. Yiu, Christy J. Cole, Anna Matynia, Robert A. Brown, Rachael L. Neve, John F. Guzowski, Alcino J. Silva, Sheena A. Josselyn. Neuronal Competition and Selection During Memory Formation 2007. V. 316. P. 457–460.

Есть обидное выражение «память как у рыбки». Учёные, правда, давно развеяли миф о трёхсекундной памяти рыб, но выражение осталось. Память человека чуть побольше - и это с одной стороны хорошо, ведь некоторые вещи хочется поскорее забыть. Но с другой стороны, это плохо, потому что в мире есть вещи, которые хочется запомнить, причём навсегда. Рассказываем, как это сделать с помощью игровых тренажёров для мозга «Викиум» .

Ошибки памяти

В этом году американские исследователи сделали удивительное даже для себя открытие. Они обнаружили, что память человека записывает события дважды. Одна запись делается, грубо говоря, для сиюминутного использования, вторая — на всю жизнь.

Прежняя теория гласила, что для запоминания кратковременных событий используется гиппокамп - участок головного мозга, который, как считалось, записывал события, а они уже впоследствии передавались в кору головного мозга для длительного хранения. Исследователи из центра по изучению генетики нейронных цепей Riken-MIT провели опыт, который опровергнул эту теорию и изумил самих учёных. Правда, эксперимент провели на мышах. Но авторы уверяют, что результаты применимы и к людям.

Как запомнить всё

Изучить человеческий мозг гораздо сложнее, формирование воспоминаний и в принципе памяти до сих пор является для людей загадкой. Одним из видных учёных, исследовавших работу памяти, был Герман Эббингауз. Ему принадлежит термин «Кривая забывания».

Основой этого термина стал эксперимент, который Эббингауз проводил на самом себе. Он сделал для себя карточки с абсолютно бессмысленными слогами, не вызывающими никаких ассоциаций. И показывал их себе, стараясь запомнить написанное.

В итоге исследователь понял, что после первого безошибочного повторения серии таких слогов они очень быстро забываются. Уже в течение первого часа до 60 процентов пропадает. Через 10 часов после заучивания в памяти остаётся 35 процентов от изученного. Далее процесс забывания замедляется. Через шесть дней в памяти остаётся около 20 процентов заученной информации. Столько же остаётся через месяц.

На основе его исследований психологами был разработан так называемый режим рационального повторения. Он пригодится людям, которым необходимо запоминать большие объёмы информации.

Если вам нужно что-то хорошо запомнить, но на короткое время , надо делать следующие повторения:

первое повторение - сразу после чтения;

второе повторение - через 20 минут после первого повторения;

третье повторение - через восемь часов после второго;

четвёртое повторение - через 24 часа после третьего.

Если информацию нужно запомнить надолго или вообще навсегда , можно попробовать использовать такой метод, который, правда, займёт много времени:

первое повторение - сразу по окончании чтения;

второе повторение - через 20-30 минут после первого повторения;

третье повторение - через один день после второго;

четвёртое повторение - через две-три недели после третьего;

пятое повторение - через два-три месяца после четвёртого повторения.

Как прокачать память

Человеческий мозг условно можно сравнить с компьютером. Есть оперативная память для сиюминутных задач, и есть жёсткий диск, на котором хранится информация. Вероятно, человек может запомнить даже больше компьютера. Считается, что в голове помещается петабайт информации. Это примерно вся информация, которая на сегодняшний день имеется в интернете.

Но как вовремя извлекать эту информацию из головы — пока большой вопрос. В первой статье с «Викиум» мы уже выяснили, что мозги практически как в спортзале, если подходить к этому делу ответственно.

Существует не менее хакерский способ для того, чтобы прокачать память. У «Викиум» есть целый тренажёрный зал с упражнениями для развития памяти, который нужен каждому, кто хочет лучше ориентироваться в окружающем мире, помнить, где припаркована машина или когда поздравлять бабушку с днем рождения.

Будьте готовы, что прокачка памяти — это занятие, в котором не помогут стероиды. Придётся тренироваться каждый день. Впрочем, «Викиум» не даст вам забыть о тренировке. Сервис присылает уведомления о том, что пора уделить 10 минут своей голове.

10 минут кажутся небольшим временем, но за этот перерыв, даже если вы сидите на работе, можно пройти курс эффективных упражнений.

Например, этот тренажёр будет способствовать развитию навыков, особенно важных для тех, чья профессиональная деятельность связана со зрительными образами: инженеров, дизайнеров, художников, писателей, режиссёров, актёров. А этот прокачает способности программиста, конструктора, химика, прикладного информатика и многих других - всех, кто хранит и воспроизводит большой объём значимой информации.

Каждый из тренажёров имеет под собой серьёзную научную основу. Их разрабатывали с помощью зарубежных методик исследования познавательных процессов. В работе с мозгом в этом тренажёрном зале для нейронов применяются диагностические инструменты: таблицы Шульте, эффект Струпа, тест Корси и другие.

Но несмотря на мудрёные термины, онлайн-тренажёры не заставляют сильно напрягаться. Дело в том, что они сделаны в игровой форме, то есть больше похожи на компьютерную игру, чем на какую-то сложную задачку.

На «Викиум» можно наглядно увидеть, насколько улучшилась ваша память. Для этого предусмотрен соревновательный момент. Можно потягаться с другими участниками, которых уже больше миллиона человек.

Между прочим, среди соперников в ближайшее время могут попасться и депутаты Госдумы. Качалку для мозга недавно оценил спикер парламента Вячеслав Володин.

Впрочем, даже если вы не метите в депутаты, хорошая память не помешает. Она пригодится для запоминания телефонных номеров, пин-кодов, стихотворений, в конце концов. Ну и просто стать эрудитом за 10 минут упражнений в день - это, как говорил Альберт Эйнштейн, дорогого стоит.

Cпешите, чтобы натренировать память к Новому году: «Викиум» проводит праздничную распродажу и премиум-доступ можно купить ну очень выгодно!